

Qualipy (v0.1.0)

Qualipy is a library designed to track and monitor real-time and retrospective data and provide automated
anomaly detection, reporting, and analysis on that data.

	It does the following:
	
	
	Provide a library that allows you to:
	
	Create generic aggregate functions

	Reflect any column that aggregates can be tracked on (Currently Pandas Series, Spark Columns and SQL columns)

	Execute these aggregate functions as your data pipeline is running

	Track and maintain these aggregate values in a separate location (Either SQlite or Postgres)

	
	Generate reports describing your data in real time
	
	Longitudinally describing all batches over time

	Describe a single batch to understand at a deeper level

	Run automated anomaly detection on all collected aggregates (and has an extendible anomaly detection model)

	
	Provide a command line interface to:
	
	Execute anomaly detection

	Produce anomaly, comparison or batch reports

	Interact with the historical data

Contents:

	Installation and Setup

	Overview
	What it looks like

	What just happened?

	Tutorials and Recipes
	Tutorial 1

	Tutorial 2

	Tutorial 3

	Tutorial 4

	Recipe 1

	User Guide
	Creating Functions

	Creating a mapping

	Project

	Supported DataSet Types

	Qualipy

	Data types

	Configuration File

	CLI User Guide

	Anomaly Detection
	How to use

	Prophet

	isolationForest

	StandardDeviation

Indices and tables

	Index

	Module Index

	Search Page

Installation and Setup

I highly recommend using conda to simplify the installation of fbprophet/pystan, but
any package manager will work. fbprophet is not a required library, but it provides the best
anomaly detection results.

To create a new virtual environment:

$ conda create --name qpy python=3
$ conda activate qpy

To install using pip:

$ pip install qualipy
$ conda install -c conda-forge pystan
$ conda install -c conda-forge fbprophet

To install using git:

$ git clone https://github.com/baasman/qualipy
$ cd qualipy
$ pip install .
$ conda install -c conda-forge pystan
$ conda install -c conda-forge fbprophet

By default, Qualipy will create a SQLite file to store and maintain all data. However,
as data grows larger and more complex, Postgres becomes recommended. This is not a guide
on running Postgres, but to get setup easily, docker is recommended.

Overview

What it looks like

Take a look at the following example to get a view of what a qualipy pipeline looks like:

from qualipy.reflect.column import column
from qualipy.reflect.function import function
from qualipy import Qualipy, Project
from qualipy.backends.pandas_backend.pandas_types import FloatType
from qualipy.backends.pandas_backend.dataset import PandasData
from qualipy.datasets import stocks

@function(return_format=float)
def mean(data, column):
 return data[column].mean()

price_column = column(column_name="price", column_type=FloatType(), functions=[mean])

project = Project(project_name="example", config_dir="/tmp/.qualipy")
project.add_column(price_column)

qualipy = Qualipy(project=project)
stocks = PandasData(stocks)
stocks.set_stratify_rule("symbol")
qualipy.set_chunked_dataset(stocks, time_column="date", time_freq="1M")
qualipy.run(autocommit=True)

What just happened?

First, we created a function called ‘mean’, using the function decorator. This establishes a numerical aggregator that
returns the mean of a column, in a float format. This could now be applied to any live - numerical
data and tracked.

Second, we create a mapping between the column “price” of the stocks data and the
price_column object. This establishes the mapping, enforces a datatype, and specifies
what metrics to track. Many more options are available.

Third, we establish a Project. This project will be the overarching object that persists each batch’s aggregate data.

Now that we’ve set up the boilerplate of Qualipy, we can get to actually running it
on some real data. All we need to do instantiate the Qualipy object and tie it to whatever
project we want to track. We also need to instantiate our dataset, in this case a pandas
dataset, and optionally define a way to stratify in incoming data. All that’s left is to
set the current dataset, and run.

Tutorials and Recipes

For beginners getting into using Qualipy, I’d recommend following these tutorials in order

Tutorial 1

Explore a dataset by collecting aggregates over chunks of a dataset: Example_1 [https://github.com/baasman/qualipy/blob/qualipy-0.1.1/example/chunked_dataset_anomaly_pandas.py].

Concepts:

	Creating a Pandas function

	Defining core components in Qualipy

	Simulate a time series by chunking the input data

Tutorial 2

Explore a single batch of data using Qualipy: Example_2 [https://github.com/baasman/qualipy/blob/qualipy-0.1.1/example/profile_dataset_pandas.py].

Concepts:

	Creating a Pandas function

	Defining core components in Qualipy

	Profiling a dataset by automatically collecting useful information about a single batch of data

Tutorial 3

Similar to example 1, but this is a more involved example and includes flat data as a source: Example_3 [https://github.com/baasman/qualipy/blob/qualipy-0.1.1/example/multiple_runs_per_batch_pandas.py].

Concepts:

	Creating a Pandas function

	Using reference names for columns to refer to them at different times

	Working with numerical and categorical data

	Simulate a time series by chunking the input data

Tutorial 4

Like example 3, but creates a new more complex function: Example_4 [https://github.com/baasman/qualipy/blob/qualipy-0.1.1/example/complex_functions_pandas.py].

Concepts:

	Creating a Pandas function

	Creating another Pandas function with an additional argument

	Specifying the argument in the column definition

	Using reference names for columns to refer to them at different times

	Working with numerical and categorical data

	Simulate a time series by chunking the input data

Recipe 1

Use this to analyze a pandas dataframe. All you need to fill in is the numeric, categorical,
and datetime columns, and the rest should work like magic!

User Guide

Creating Functions

	
qualipy.reflect.function.function(allowed_arguments: ~typing.Optional[~typing.List[str]] = None, return_format: type = typing.Union[float, str], arguments: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, fail: bool = False, display_name: ~typing.Optional[str] = None, description: ~typing.Optional[str] = None, input_format: type = <class 'float'>, custom_value_return_format: ~typing.Optional[type] = None) → Callable

	Define a function that can be applied to a qualipy dataset

Use this decorator to specify a qualipy function, and describe
how it will function when executed. Whatever function this decorator
is used for must abide by three rules:

	The first argument must be data - This is the data object you pass to Qualipy

	
	The second argument is the column - This is the name of the column the function
	is being applied to.

	
	Any arguments as they correspond to allowed_arguments - They must contain the same
	name exactly.

	Parameters

	
	allowed_arguments – An optional list that specifies what
arguments can be passed to the function at runtime

	return_format – Used for rendering purposes on the reporting. Can be either
float, int, str, dict, or bool

	fail – If this rule returns a boolean, should the process halt given
a False?

	display_name – This is how the function would be displayed on a report.
if not given, it will take the name of the function itself

	description – If given, this will be displayed when hovering over the function
name in a report

	Returns

	Any value that corresponds to the appropriate return_format

Example 1 - A simple function with no additional arguments:

import qualipy as qpy
@qpy.function(return_format=float)
def mean(data, column):
 return data[column].mean()

	Per the rules, data represents the data passed through, in this case a pandas DataFrame,
	column is the string name of column is used to access the column from the DataFrame.

Additionally, the method mean returns a float value, which is consistent with the
return_format set in the decorator call.

Example 2 - A simple function with additional arguments:

@qpy.function(return_format=int, allowed_arguments=["standard_deviations"])
def std_over_limit(data, column, standard_deviations):
 mean = data[column].mean()
 std = data[column].std()
 data = data[
 (data[column] < (mean - standard_deviations * std))
 | (data[column] > (mean + standard_deviations * std))
]
 return data.shape[0]

Example 3 - A function when running SQL as backend:

@qpy.function(return_format=float)
def mean(data, column):
 return data.engine.execute(
 sa.select([sa.func.avg(sa.column(column))]).select_from(data._table)
).scalar()

Creating a mapping

	
qualipy.reflect.column.column(column_name: Optional[Union[str, List[str]]] = None, column_type=None, force_type: bool = False, overwrite_type: bool = False, null: bool = True, force_null: bool = False, unique: bool = False, is_category: bool = False, is_date: bool = False, split_on: Optional[str] = None, column_stage_collection_name: Optional[str] = None, functions: Optional[List[Union[Callable, Dict]]] = None, extra_functions: Optional[Dict[str, Dict]] = None)

	This allows us to map to a column of a data object.

This is one of the essential components of Qualipy. Using column allows us to map
to a specific column of whatever data object we are reflecting, and specify
what that column should look like - as well as apply any aggregate functions we’ve
defined.

Note - You must explicitly add it to the Project object in order for it to run.

	Parameters

	
	column_name – The name of the column in the data object - Generally either the column name
in the pandas or SQL table.

	column_type – Useful if you want to enforce types in a pandas DataFrame. See (link here) DataTypes section
for more information.

	force_type – If column_type is used, should the type be enforced. Setting this to True means that
the entire process will halt if right type is not present.

	overwrite_type – This is useful if the aggregate function requires a specific datatype for it to be
computed.

	null – Can the column contain missing values

	force_null – If null is set to False - should the process fail given there are missing values present.

	unique – Should uniqueness in the column be enforced.

	is_category – Denoting a column as a category has several consequences - including automatically
collecting counts for each category.

	functions – A list of property defined functions.

	extra_functions – If this mapping is used for multiple columns but want a function to be applied to
only one of the columns, use this. See example for more information.

	Returns

	A column object that can be added to a Project. See Project for more details.

Example 1 - Reflect a pandas column with one function:

price = qpy.column(column_name="price", column_type=FloatType(), functions=[mean])

Here, price is the name of the pandas column. We want to column to be of float type,
and we’re collecting the mean of the price.

Example 2 - Reflect a column, and call a function with arguments:

price = qpy.column(
 column_name="price",
 column_type=FloatType(),
 functions=[{"function": std_over_limit, "parameters": {"standard_deviations": 3}}],
)

Example 3 - Reflect multiple columns, and call a function on just one of them:

num_columns = qpy.column(
 column_name=["price", "some_other_column"],
 column_type=FloatType(),
 functions=[mean],
 extra_functions={
 "price": [
 {"function": std_over_limit, "parameters": {"standard_deviations": 3}},
],
 },
)

In this scenario, mean will be applied to price, but std_over_limit will only
be applied price

Project

	
class qualipy.project.Project(project_name: str, config_dir: str, re_init: bool = False)

	The project class points to a specific configuration, and holds all mappings.

It also includes a lot of useful utility functions for working with the management
of projects

	
__init__(project_name: str, config_dir: str, re_init: bool = False)

	
	Parameters

	
	project_name – The name of the project. This will be important for referencing
in report generation later. The project_name can not be changed - as it used
internally when storing data

	config_dir – A path to the configuration directory, as created using the CLI command qualipy generate-config.
See the (link here)``config`` section for more information

	
add_column(column: Column, name: Optional[str] = None, column_stage_collection_name: Optional[str] = None) → None

	Add a mapping to this project

This is the method to use when adding a column mapping to the project. Once added,
it will automatically be executed when running the pipeline.

	Parameters

	
	column – The column object. Can either be created through the function method or class method.

	name – This is useful when you don’t want to run all mappings at once. Often, you’ll do analysis
on different subsets of the same dataset. Use name to reference it later on and only execute
it for a specific subset.

This name is also essential if you want to analyze the same column, but in a different
subset of the data.

	Returns

	None

Example 1 - Instantiate a project:

import qualipy as qpy

project = qpy.Project(project_name='stocks', config_dir='/tmp/.config')

Example 2 - Instantiate a project and add a column to it:

import qualipy as qpy

project = qpy.Project(project_name='stocks', config_dir='/tmp/.config')
using the price column defined above
project.add_column(column=price, name='price_analysis')

Supported DataSet Types

Currently, there are three different dataset types supported: Pandas, Spark, and SQL

Pandas

	
class qualipy.backends.pandas_backend.dataset.PandasData(data: DataFrame)

	PandasData must be instantiated when tracking pandas data

	
__init__(data: DataFrame)

	
	Parameters

	data – The pandas dataset that we want to track

	
set_stratify_rule(column: str, values: Optional[List[str]] = None) → None

	Use this when you want to run all functions on separate stratifications

Currently, only equality based stratification is possible. In the future, comparison
based stratifications will be available.

	Parameters

	
	column – The name of the column you want to stratify on.

	values – If you only want to include a subset of values within column,
specify them here

	Returns

	None

Example 1 - Setting symbol as a stratification:

from qualipy.backends.pandas_backend.dataset import PandasData

stocks = PandasData(stocks)
stocks.set_stratify_rule("symbol")

Example 2 - Setting symbol as a stratification and specifying the subset of stocks to analyze:

from qualipy.backends.pandas_backend.dataset import PandasData

stocks = PandasData(stocks)
stocks.set_stratify_rule("symbol", values=['IBM', 'AAPL'])

SQL

	
class qualipy.backends.sql_backend.dataset.SQLData(engine: Optional[Engine] = None, table_name: Optional[str] = None, schema: Optional[str] = None, conn_string: Optional[str] = None, custom_select_sql: Optional[str] = None, create_temp: bool = False, backend='sql')

	This is used when tracking a relational table

	
__init__(engine: Optional[Engine] = None, table_name: Optional[str] = None, schema: Optional[str] = None, conn_string: Optional[str] = None, custom_select_sql: Optional[str] = None, create_temp: bool = False, backend='sql')

	
	Parameters

	
	engine – A sqlalchemy engine to the database containing the table we want to track

	table_name – The name of the table we want to track

	schema – The schema the table is in

	conn_string – If engine is None, you can just pass the sqlalchemy database connection

	custom_select_sql – Must be proper SQL for whatever DB you are using. This will instantiate
a temporary table that Qualipy will run against. This is useful if you dont need the
entire table, or need to run any joins before running Qualipy. However, often it
might be better to just create a view of what you need.

	
set_custom_where(custom_where: str)

	Set this when you want a function to run on a subset of the table

	Parameters

	custom_where – The where portion of a sql statement. This can then be used in
a function. See example in the documentation for more information

Example 1 - Instantiating a table:

import sqlalchemy as sa
from qualipy.backends.sql_backend.dataset import SQLData

engine = sa.create_engine('sqlite://')
data = SQLData(engine=engine, table_name='my_table')

Example 2 - Instantiating a table and setting a custom where clause:

import sqlalchemy as sa
from qualipy.backends.sql_backend.dataset import SQLData

engine = sa.create_engine('sqlite://')
data = SQLData(engine=engine, table_name='my_table')
data.set_custom_where("my_col = 'setosa'")

Qualipy

	
class qualipy.run.Qualipy(project: Project, backend: str = 'pandas', time_of_run: Optional[datetime] = None, batch_name: Optional[str] = None, overwrite_arguments: Optional[dict] = None)

	This is the main entrypoint to Qualipy. This is the object that will actually
execute on your data.

	
__init__(project: Project, backend: str = 'pandas', time_of_run: Optional[datetime] = None, batch_name: Optional[str] = None, overwrite_arguments: Optional[dict] = None)

	
	Parameters

	
	project – Your defined qualipy.Project

	backend – Can be either “pandas”, “sql”, or “spark” depending on what kind
of data you are tracking

	time_of_run – If None, this will be the current datetime. Note, this is very important
for analysis, as time_of_run is essentially your x_axis in all time series analysis.
Being able to set it to a specific date can be useful when generating retrospective
statistics.

	batch_name – Useful for comparing specific time points by name during analysis. By default it will
take the time_of_run as batch_name

	
set_dataset(df, columns: Optional[List[str]] = None, run_name: Optional[str] = None) → None

	This specified the exact subset of data you want to run on.

Use this method when you don’t have all of the data (a live process) and want
to only run on one batch of data.

	Parameters

	
	df – Can be either PandasData, SQLData, or SparkData

	columns – If you don’t want to run all mappings on this specific subset
of data, you can specify just the columns you want to run. Note - this
corresponds to the name argument when adding a column to a project

	run_name – If you’re running metrics from a project on many different subsets any
iterations of the data, you might want to give each specific subset a
name. This is especially necessary when running aggregates on a column
where the column name itself stays the same, but the meaning changes based
on the subset. By default, this will take the value of ‘0’

	Returns

	None

	
set_chunked_dataset(df, columns: Optional[List[str]] = None, run_name: Optional[str] = None, time_freq: str = '1D', time_column=None)

	This specified the exact subset of data you want to run on.

Use this method when you already have all data available, and want to retrospectively
analyze all historical as if it was a live process. Note - There’s nothing stopping you
from first running this on the available data and then running on a batch-per-batch basis
afterwards using regular set_dataset.

	Parameters

	
	df – Can be either PandasData, SQLData, or SparkData

	columns – If you don’t want to run all mappings on this specific subset
of data, you can specify just the columns you want to run. Note - this
corresponds to the name argument when adding a column to a project

	run_name – If you’re running metrics from a project on many different subsets any
iterations of the data, you might want to give each specific subset a
name. This is especially necessary when running aggregates on a column
where the column name itself stays the same, but the meaning changes based
on the subset. By default, this will take the value of ‘0’

	time_freq – A pandas-like timeseries frequency term. Use this page to know what you
can use: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases (turn to link)

	time_column – The time series column qualipy should use to chunk the data

	Returns

	None

Data types

There are several data types one can check for, depending on the backend.
For pandas, these include

	DateTimeType

	FloatType - will match against float16-128

	IntType - will match against int0-64

	NumericTypeType - will match with any numeric subtype

	ObjectType

	BoolType

For SQL and SPARK backends, these are generally less important as type is usually
enforced by the framework itself, reducing the need for type checking.

Configuration File

The configuration file drives a lot of the reporting and anomaly detection in Qualipy. The default
config.json file is created upon running qualipy generate-config through the CLI.

	Some notes on the configuration:
	
	how to reference metrics…

The following json has all available keys one could set.

{
 # The sqlalchemy like string that tells Qualipy where to store all data.
 # By default this is set to a sqlite file within the config directory
 "QUALIPY_DB": "sqlite:////tmp/.qualipy/qualipy.db"",
 # If using a database like postgres that supports schemas, setting this
 # would place all data in that specific schema
 "SCHEMA": "",
 # the name of the project were configuring. This corresponds to your Qualipy
 # pipeline.
 "example_project": {
 # This is where you specify anomaly specific settings
 "ANOMALY_ARGS": {
 # Each anomaly score corresponds to a standardized value. In general,
 # anything over 1 is considered an anomaly, but this could be used to
 # control the severity of the outliers
 "importance_level": 1.3,
 # This is used to set "rules" for any specific column. See what rules
 # are available to use **here (set this)
 "specific": {
 # to reference an aggregate, use run_name + column_name + metric_name + arguments (if any)
 "rows_my_column_count_": {
 # "increasing" is just an example of a function that checks whether
 # or not the aggregate is always increasing. This might be useful
 # when you're inspecting the total size of a database
 "increasing": {
 # Can be turned on and off
 "use": true,
 # Since this is not a machine learning based approach, you have
 # to set your own severity level when using custom rules
 "severity": 3
 }
 },
 }
 },
 # What anomaly model to use. See the Anomaly Detection guide for different
 # options
 "ANOMALY_MODEL": "prophet",
 # Date format to use on reports
 "DATE_FORMAT": "%Y-%m-%d",
 # Minimum severity level to set for filtering out numerical
 # anomalies on the anomaly report
 "NUM_SEVERITY_LEVEL": 1,
 # Minimum severity level to set for filtering out categorical
 # anomalies on the anomaly report
 "CAT_SEVERITY_LEVEL": 1,
 # Useful for categorizing anomalies based on certain thresholds
 "SEVERITY_LEVELS": {
 "low": 1.5,
 "medium": 2.5,
 "high": 10
 },
 # The following section controls the plots on the anomaly report
 "VISUALIZATION": {
 # Controls the visualizations that are displayed in the anomaly report. There
 # are 5 different categories of data to be displayed. Each one of them has their
 # own section

 # Since Qualipy by default gathers raw row counts for each data input, this section
 # will show show the overal trend of data size over time
 "row_counts": {

 # Include this if you want to view the counts of the most recent batch.
 "include_bar_of_latest": {
 "use": true,
 "diff": true,
 "show_by_default": true
 },
 # Include this if you want to get a summary overview of the row counts
 "include_summary": {
 "use": true,
 "show_by_default": true
 }
 },

 # This section is for viewing all metrics that return a numerical data type,
 # such as float and int
 "trend": {
 "include_bar_of_latest": {
 "use": true,
 # You can use this to only include certain metrics
 "variables": [
 "measurement_concept_id_measurement_number_of_unique_",
 "drug_concept_id_drug_number_of_unique_",
],
 "diff": false,
 "show_by_default": true
 },
 "include_summary": {
 "use": true,
 "show_by_default": true
 },
 # Specify an sst to add a layer to the plot that include_summary
 # change point detection. The value refers to how far to look back
 "sst": 3,
 # Set this to true if each batch should have a point. Note, this
 # can look unappealling with a large number of batches
 "point": true,
 # Set this to include a rolling mean for each trend
 "n_steps": 10,
 # Set this if you want to include a layer in the plot that shows
 # the difference from a previous value
 "add_diff": {
 # Set this to determine how far to look back
 "shift": 1
 }
 },
 # Add this to visualize all categorical variables (those returning dicts
 # with counts).
 "proportion": {
 }
 # This section includes analysis on the missingness of the data
 "missing": {
 # By default, it will only show data that contains any actual missing data.
 # To also show data without any missingness, set this to True
 "include_0": true,
 "include_bar_of_latest": {
 "use": true,
 "diff": false
 }
 },

 },

 # This section is for customizing the metric names and hover-over descriptions,
 # in order to potentially make them more human-readable
 "DISPLAY_NAMES": {
 # This default list is automatically populated by the function name
 # and description from the function definition
 "DEFAULT": {
 "number_of_unique": {
 "display_name": "number_of_unique_values",
 "description": "A total count of the number of unique values in the batch"
 }
 },
 "CUSTOM": {
 "random_function": {
 "display_name": "Random Function",
 "description": "Description of random_function"
 }
 },
 }
 },
}

CLI User Guide

Anomaly Detection

Qualipy trains a separate anomaly and forecasting model for each aggregate that’s generated
in your project. Each of these models are stored in the models directory of the configuration
directory, and can be deployed in any situation. It’s generally up to the user on how to schedule
and deploy the training and reporting of anomalies, but Qualipy provides the functionalities to
configure each model, fine-tune it’s sensitivity to outliers, and store all anomalies for a project. It also
provides a variety of anomaly reports to understand and traverse through all anomalies in a project.

How to use

In Qualipy, anomaly models can be controlled through the CLI and configuration file

First, we should cover the different available options in the configuration file to set up
our models. Note, it might be useful to first have a general understanding of the configuration layout here

The configuration for the anomaly models can be set within a the project specific config. To specify which
model we want to deploy, we must first set the ANOMALY_MODEL key:

...
"my_project": {
 "ANOMALY_MODEL": "prophet"
}
...

This means that Qualipy will train a separate prophet model for each metric. To further configure our prophet models,
we must dive into the ANOMALY_ARGS. There are just a few options to set here.

	Option

	Meaning

	importance_level

	Sets the minimum required importance for the observations to be anomalous. As a rule of thumb, any value
greater than 1 is considered to be anomalous. Any value greater 3 is considered to be very anomalous. By
default, it is set to one.

	specific

	An area to set additional rules on a metric by metric basis. See more information here…

Currently, there are three models implemented within Qualipy: prophet, std, and isolationForest. More info about each
of these can be found in the sections below.

Prophet

isolationForest

StandardDeviation

Index

 _
 | A
 | C
 | F
 | P
 | Q
 | S

_

 	
 	__init__() (qualipy.backends.pandas_backend.dataset.PandasData method)

 	(qualipy.backends.sql_backend.dataset.SQLData method)

 	(qualipy.project.Project method)

 	(qualipy.run.Qualipy method)

A

 	
 	add_column() (qualipy.project.Project method)

C

 	
 	column() (in module qualipy.reflect.column)

F

 	
 	function() (in module qualipy.reflect.function)

P

 	
 	PandasData (class in qualipy.backends.pandas_backend.dataset)

 	
 	Project (class in qualipy.project)

Q

 	
 	Qualipy (class in qualipy.run)

S

 	
 	set_chunked_dataset() (qualipy.run.Qualipy method)

 	set_custom_where() (qualipy.backends.sql_backend.dataset.SQLData method)

 	
 	set_dataset() (qualipy.run.Qualipy method)

 	set_stratify_rule() (qualipy.backends.pandas_backend.dataset.PandasData method)

 	SQLData (class in qualipy.backends.sql_backend.dataset)

Deployment

Quickstart

Basic Example

First, we will create a function called ‘mean’, using the function decorator. This establishes a numerical aggregator that
returns the mean of a column, in a float format. We’ll do the same with the function ‘std’.:

from qualipy import Column, function, Project, Qualipy
from qualipy.backends.pandas_backend.pandas_types import FloatType

import pandas as pd
import numpy as np

@function(return_format=float)
def mean(data, column):
 return data[column].mean()

@function(return_format=float)
def percentage_missing(data, column):
 return data[column].isnull().sum() / data.shape[0]

Second, we map a class called ‘MyCol’ to the column ‘my_col’ by inheriting from the Column base class.
Within that mapping, we specify:

	column_name: The column it refers to

	column_type: The type the column should adhere to

	force_type: If True, process fails if column type does not match

	null: Can column be null

	force_null: if null is False, process fails if null values found in column

	unique: Should uniqueness of column be enforced?

	functions: The arbitrary functions we’d like to call on the column

For example, to specify a column with the two functions defined above:

class MyCol(Column):

 column_name = "my_col"
 column_type = FloatType()
 force_type = True
 null = False
 force_null = False
 unique = False

 functions = [
 {"function": mean, "parameters": {}},
 {"function": percentage_missing, "parameters": {}},
]

Third, we establish a Project. A project in Qualipy’s case is a representation of the dataset we want to track.
It tracks all columns and tables that belong to the data itself, and connects it to a specific configuration.:

project = Project(project_name="example", config_dir="/tmp/.qualipy")
project.add_column(MyCol())

Now we can start the web app using qualipy run.

$ qualipy run –config_dir /tmp/.qualipy

 nav.xhtml

 Table of Contents

 		
 Qualipy (v0.1.0)

 		
 Installation and Setup

 		
 Overview

 		
 What it looks like

 		
 What just happened?

 		
 Tutorials and Recipes

 		
 Tutorial 1

 		
 Tutorial 2

 		
 Tutorial 3

 		
 Tutorial 4

 		
 Recipe 1

 		
 User Guide

 		
 Creating Functions

 		
 Creating a mapping

 		
 Project

 		
 Supported DataSet Types

 		
 Qualipy

 		
 Data types

 		
 Configuration File

 		
 CLI User Guide

 		
 Anomaly Detection

 		
 How to use

 		
 Prophet

 		
 isolationForest

 		
 StandardDeviation

_static/file.png

_static/minus.png

_static/plus.png

